IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 4859-4878

Effective medium method in the problem of axial elastic
shear wave propagation through fiber composites

S.K. Kanaun **, V.M. Levin °

& Department of Engineering and Architecture, Instituto Tecnoldgico y de Estudios Superiores de Monterrey,
CEM, Apd postal 18, Edo de México, Atizapan 52926, Mexico
® Instituto Mexicano del Petréleo, Eje Central Lazaro Cardenas 152, Mexico

Received 15 August 2002; received in revised form 12 March 2003

Abstract

The effective medium method (EMM) is applied to the solution of the problem of monochromatic elastic shear wave
propagation through matrix composite materials reinforced with cylindrical unidirected fibers. The dispersion equa-
tions for the wave numbers of the mean wave field in such composites are derived using two different versions of the
EMM. Asymptotic solutions of these equations in the long and short wave regions are found in closed analytical forms.
Numerical solutions of the dispersion equations are constructed in a wide region of frequencies of the incident field that
covers long, middle and short wave regions of the mean wave field. Velocities and attenuation factors of the mean wave
fields in the composites obtained by different versions of the EMM are compared for various volume concentrations
and properties of the inclusions. The main discrepancies in the predictions of different versions of the EMM are in-
dicated, analyzed and discussed.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of the monochromatic wave propagation through composite materials has many important
applications. The solution of this problem allows us to predict the response of composite materials to
various types of dynamic loading; this problem is a theoretical background of the non-destructive analysis
of microstructures of composites by using ultrasonic technique. The main objectives of the theory in this
problem are the dependence of the phase velocity and attenuation factor of the mean wave field propa-
gating through the composite on the frequency of the incident field (dispersion curves) and on the details of
the composite microstructure. For the composite materials with random microstructures this problem can
not be solved exactly and only approximate solutions are available. The effective medium method (EMM) is
widely used for the construction of such approximate solutions of the elastic wave propagation problem
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(see e.g., Sabina and Willis, 1988, 1993a,b; Jin-Yeon et al., 1995; Kanaun, 1996, 1997 and others). In the
case of composites with spherical inclusions the predictions of the EMM are in agreement with known
experimental data (see Sabina and Willis, 1988; Jin-Yeon et al., 1995).

In the literature there exist several different versions of the EMM, and one can say that the EMM is a
group of self-consistent methods joined by a common hypothesis that for the construction of the wave field
inside a typical inclusion in the composite the inhomogeneous material outside some vicinity of this in-
clusion may be changed for the homogeneous medium with effective (overall) properties of the composite.
The analysis of various versions of the EMM in the case of electromagnetic wave propagation through
heterogeneous media is presented in Kanaun (2000).

For the application of the EMM to the solution of the problem of elastic wave propagation through
composite materials one has to understand the differences in predictions of various versions of the method,
the character of possible errors and the area of application of every version. In this work we consider the
propagation of monochromatic elastic shear waves in the composites with infinite unidirected cylindrical
fibers when the wave vector of the incident field is orthogonal to the fiber directions and the polarization
vector coincides with this direction (the axial shear waves). For this type of the waves we develop
the version of the EMM that is similar to the one proposed by Budiansky (1965) and Hill (1965a,b) for the
calculation of static properties of composite materials (version I). In this version every inclusion in the
composite is considered as an isolated one embedded in the homogeneous medium with the effective
properties of the composite. Another version of the EMM that corresponds better to experimental data was
proposed in the works of Kerner (1956) and Christensen and Lo (1979). In this version a layer of matrix
material was involved in the border between the effective medium and the inclusion (version II).

In the work these two versions of the EMM are generalized for the dynamic case. In Section 3, we
develop a general dispersion equation of both versions of the EMM that serves for all frequencies of the
incident field. The solutions of the dispersion equations give us the velocities and attenuation factors of the
mean wave field propagating through the composite medium. Every version of the EMM reduce
the problem of interactions between many inclusions in the composite to a specific one particle problem.
Exact solutions of the one particle problems of two versions of the EMM are presented in Sections 4 and 6.
In Section 4.2, we construct an approximate solution of the one particle problem that serves only in the
long wave region. A similar approximation was used for the solution of the problem of long elastic wave
propagation through particulate composite materials in Sabina and Willis (1988, 1993a,b).

Note that in the literature the EMM was used for the calculation of the wave velocities and attenuation
factors of the mean wave field in the long and middle wave regions, where the wavelength of the mean wave
field is more than a typical size of inclusions or is compared with the latter. In this work we consider the
solutions of the dispersion equations of the EMM in a wide region of frequencies that covers long, middle
and short wave regions. In the long and short wave regions we find asymptotic solutions of the dispersion
equations in closed analytical forms (Sections 5 and 6). Numerical solutions of the dispersion equations of
both versions of the EMM are obtained and compared in Section 7. The cases of the composites with
contrast properties of components are considered. The discussion of the discrepancies in the predictions of
various versions of the EMM in a wide region of frequencies of the incident field and volume concentra-
tions of inclusions is presented in Section 8.

2. Integral equations of the diffraction problem

Let us consider an infinite homogeneous medium (matrix) with elastic moduli tensor C° and density p,
containing a random set of continuous cylindrical fibers directed along x;-axis. C and p are the elastic
moduli tensor and density of the fibers. If a monochromatic axial shear wave of frequency w propagates in
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such a composite, and the dependence on time is defined by the multiplier e, only the component w3 of the
amplitude of the displacement field u;(x) is not equal to zero (“‘antiplane” strain state)

Uy =uy, =0, uz(x) = u(y), x = x(x1,X2,X3), v =y(x1,x2) (2.1)
and the equation of motion takes the form
)
0.Can(0uu(y) + p)ofu) =0, =7 (22)

The components Cyj3(y) = u(y)d;; of the elastic moduli tensor Cyy,(y) of the medium and its density p(y)
may be presented as the following sums:

wy) = po + 1,8(»), p(y) = po+ p1S»), = M — [, p1 =P~ P (2.3)

Here u(y) is the elastic shear modulus in the direction of the fibers, S(y) is the characteristic function of
the region S occupied by the inclusions (S(y) = 1ify € S, S(y) = 0if y £ S). After substituting Eq. (2.3) into
Eq. (2.2) the latter takes the following form:

fodu(y) + py@’u(y) = = &i[e()S()] — @’ pyu(y)S(v), (24)
where 4 = 92/ax? + 92 /x? is the Laplace operator, & (y) = Ou(y). Applying the operator (uy4 + pyw?) ' to
both sides of this equation we obtain the integral equation for the displacement field u(y) in the form

u(y) = uo(y) + / oGy — ¥ )me()SH)dy + / Gy —y)pu(y)S(H/)dy. (2.5)

Here uy(y) is the incident field that would have existed in the medium without inclusions (¢, = 0, p; = 0).
G(y) is the Green function of the operator py4 + p,w*. The equation for this function and its solution have
the forms (see Eringen and Suhubi, 1975)

(o4 + py®)G(y) = —d(y),
i Po
G») = =g Holhor). =yl ko :“\/u:o’ 2.6)

where o6(y) is Dirac’s delta-function, Hy(z) is the Hankel function of the second kind and zero-order.
Integration in Eq. (2.5) is spread over entire 2D-space. Note that the Fourier transform of the function G(»)
has the form

Gk) =Ly'(k),  Lo(k) = pok® — pye®, k= [K|, (2.7)

where k(ki,k,) is the vector parameter of the Fourier transform. (We denote the Fourier transforms of
functions by the same letter with the other argument only.)

The incident field uy(y) in Eq. (2.5) is a plane shear wave with the wave vector K® = kon® that is
orthogonal to x;-axis. For such a field we have

up(y) = erfiko‘y, &(y) = duo(y) = —iko"?erfikoy- (2.8)
The equation for the strain field ¢;(y) follows from Eq. (2.5) in the form
50) =0+ [RAGK ~ Y )wal) + 070G~ Jply)IS0) & (29)

Note that the multiplier S(y) in the right-hand sides of Egs. (2.5) and (2.9) cuts the functions u(y) and
¢(y) in the region occupied by the inclusions. Thus, the main unknowns of the problem are the fields inside
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inclusions. If these fields are known, the wave fields in the matrix may be reconstructed from Egs. (2.5) and
(2.9).

3. General scheme of the basic version of the EMM

If the incident field is a plane monochromatic wave, the field propagating in the composite with a
random set of cylindrical fibers will be a non-plane random field. Our objective is to evaluate the mean
value of this field. Strictly speaking, in order to construct the mean wave field one has to solve the wave
problem for every realization of the random set of inclusions and then to average the obtained solutions
over the ensemble of realizations of this set. The difficulties of this problem oblige us to find its approximate
solution. In this work we use the effective medium method for the construction of such a solution.

Let us consider a realization of a homogeneous random set of inclusions in the matrix. In order to find
the mean wave field in the composite we accept the following two hypotheses:

1. Every inclusion in composite behaves as isolated one embedded in the homogeneous medium with the effec-
tive properties of the composite. The field that acts on this inclusion is a plane wave propagating in the
effective medium.

2. The mean wave field in the composite coincides with the field propagating in the homogeneous effective
medium.

These two hypotheses correspond to the version of the EMM proposed by Budiansky (1965) and Hill
(1965a,b) for the calculation of static elastic moduli of composite materials.

The first hypothesis reduces the problem of interactions between many inclusions in the composite to a
one particle problem. This problem is diffraction of a plane shear monochromatic wave on an isolated fiber
embedded in the effective homogeneous medium with the properties u,, p,. The integral equations of this
problem are similar to Egs. (2.5) and (2.9) and have the forms

u(y) =u'(y) + / [0:G.(y =)&) + 0’ Gy — ) pau(y)] dy, (3.1)

S0

&(y) = &)+ / [0:0,G. (v = ¥ )pae, (V') + @*0,G.(y = ¥)pau(y)]dy. (3:2)
50
Here sy is the area of the fiber cross-section, G, (y) is the Green’s function of the homogeneous medium
with the effective properties u, and p, of the composite, p,;, = p — p,, p,; = p — p,. The displacement u*(y)
and strain ¢ (y) are plane waves with the wave vector k* propagating in the effective medium

w(@)=Ue ™ G0) = —ikUe™ K =kn k= [ (3.3)

If the distribution of fibers in the matrix is homogeneous and isotropic, the effective medium is trans-
versely isotropic, and the effective wave vector k* and the wave vector k” of the incident field have the same
direction.

Let the general solution of Egs. (3.1) and (3.2) be known, and the fields u(y) and ¢;(y) inside the inclusion
with the center at point 3° = 0 be presented in the form

u(y) = (Au)(y) = AU, 5(y) = 0(Au) (v). (3.4)

Here A is a linear operator that depends on the dynamic properties of the effective medium and inclusion.
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If the inclusion occupies area Sy with the center at a point )° # 0 one can present the field u(y) inside such
an inclusion in the form (y € S;)
u(y) = A[U*e—ik*«y—y")e—ik*-y‘}] _ A[e—ik*-(.‘y—y“)]U*e—ik"-y0 — A[e—ik*-(y—yo)}eik*-(y—y‘))U*e—ik*-y
= A"y = u(y), A'(z) = AleF e, (35)
In the same way for the field ¢;(y) = 0u(y) we have
a(y) = AU ™ e Y] = Ay — 5 ). (),

Ai(z) = (@Afe ™ e . (3.6)

Here we take into account linearity of the operator A. Note that the functions A"(z) and A;(z) do not
depend on the position ) of the center of the inclusion. These functions may be constructed from the
solution of the one particle problem for the inclusion centered at point y = 0.

Let us introduce stationary random functions 2“(y) and A°(y) in 2D-space. These functions coincide with
A*(y —y') and A°(y — )*) if y is inside the inclusion centered at point y* (i = 1,2, 3,...), and they are equal to
zero in the matrix. Using these functions and hypothesis 1 of the EMM one can present the wave field u(y)
in the composite in the form that follows from Egs. (2.5), (3.5) and (3.6)

u(y) = uo(y) + / [0:G(y — V)40 ) (V) + @Gy — ¥ ) pi 2 (0 )u ()] SO ) dy. (3.7)

Here u.(y) = U.e 7%V is a plane wave with the effective wave vector k*.

In order to find the mean value of the random wave field u(y) let us average both parts of Eq. (3.7) over
ensemble realizations of the random set of inclusions and take into account the condition of self-consis-
tency (hypothesis 2)

u.(y) = (uy)). (3.8)

As a result we obtain the integral equation for the mean wave field (u(y)) in the form

(u(y)) = uo(y) +p / [0:G(y — V) m A + @Gy =y )pA,)(u(y)) &V, (3.9)
a,) =g tim [ 2oy =5 [ 20)@), (3.10)
A0 =g Jim [ = [ ama). (3.11)

Here A, and AS are constant (with respect to spatial coordinates) scalar and vector, Q is an arbitrary
region that occupies entire 2D-plane (x1, x,) in the limit Q — oo, p is the volume concentration of inclusions,
s is the area occupied by a typical inclusion. The averaging in Egs. (3.10) and (3.11) is over the ensemble of
realizations of random sizes of inclusions.

Let us apply the Fourier transform to Eq. (3.9) and multiply the result with Ly (k) = pok* — p,w?*. Taking
into account the equations

Ly(k)G(k) =1, Lo(K)ug(k) =0 (3.12)
that follow from Egs. (2.7) and (2.8), we obtain the equation for (u(k)) in the form

L@) =0, L.(K) = Lo(K) + pyikAS(K) — ppy, (K. (3.13)
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Because vector A in Eq. (3.11) is a function of the vector k* only, A° may be written in the form
A‘/.C(k*) = —ikjHc(k"), k" =K, (3.14)

where Hc(k*) is a scalar function. If the mean wave field (u(y)) is a plane wave ((u(y)) = U,e7 % ¥), its
Fourier transform is (u(k)) = (2n)°U.d(k — k*), and Eq. (3.13) takes the form L, (k)d(k — k*) = 0 or

L.(K") = Lo(K") + ppy (k") He (k") — pp o 4, (k") = 0. (3.15)

This equation may be also written in the form

(k) = p. (k) = 0, (3.16)

(k) = o +pHe(k),  p(k) = po + ppi A, (k") (3.17)

Eq. (3.16) is the dispersion equation for the effective wave number %, of the mean wave field in the
composite. The functions Hc and A, are to be found from the solution of the one particle problem (3.1),
(3.2). Thus, Egs. (3.16) and (3.17) are the system for the effective parameters ., p,, k. of the composite in
the framework of the EMM. The phase velocity v, and attenuation factor y of the mean wave field (u(y))
are connected with the wave number £, by the equations

y = —Im(k.). (3.18)

4. The solution of the one particle problem
4.1. The exact solution
The one particle problem of the EMM is the solution of the integral equations (3.1) and (3.2) if sy is a

disk of radius a centered at point y = 0. The integral equation (3.1) for u(y) is equivalent to the following
system of differential equations:

uly)=u" (), bl<a, u@)=u (), |pl>a
2
Au* + Kut =0, <a, K=
were bl <a u (4.1)
2
AR =0, P >a =22
1.
with the conditions on the boundary of sy (r = a)
_ out(r, ) Ou (r, @)
+ _ 9 _ )
ut(a,p) =u (a,o), " _ b - (4.2)

Here » and ¢ are the polar coordinates in the y-plane with the origin at the center of the inclusion. The
field u~(y) should satisfy the radiation condition at infinity

) — 1 N exp(—ik.r)
u () *@)——77—,

where u, () is the incident field.

r=yl — oo, (4.3)
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The solution of this problem has the form (see Eringen and Suhubi, 1975)

=U, zw:ame kr) cos(mo), (4.4)
u (y) =u.(y) + U. i buH, (k.r) cos(me), (4.5)
0. () = Ueoxp(—iK - y) = U, S len(=i) (k)]

where €, =1 if m =0, ¢, =2 if m > 0, J,(z) are Bessel functions and H,,(z) are Hankel functions of the
second kind. The coefficients «a,, in Eq. (4.4) take the forms

\Mm :u*k*
= (- 4.
an = (—i)"e, A (4.6)
17-[ ! ! ! df
Ap = Ek*a[u*k*Hm(k*a)Jm (ka) — pkH,,(k.a)J) (ka)), fl(z) = o (4.7
After substituting Eq. (4.4) into Eqgs. (3.10), (3.11), and (3.14) for A4, and Hc we obtain
= Zamgnn He = Zamglnn (48)
m=0 m=0
2i" 1
&0 = g e () (k) = ko) ()] (49)
i = 8o+ e (k) (), I(E) = ) (4.10)

ak, dz

The wave field (4.5) outside the inclusion consists of two parts: the incident field u, (y) and the field «*(y)
scattered on the inclusion. Let us consider the diffraction of a plane wave propagating in the original matrix
(k* =Kk°,uy(y) = Upexp(—ik’ - y)) on an isolated cylindrical inclusion. In this case the field «*(y) takes the
form

u’(y)=uly) —u(y) = U meHm(kor) cos(me), |y > a. (4.11)

On the other hand, the field scattered on the inclusion is the integral terms in Eq. (3.1), where the effective
medium should be replaced with the original matrix. Thus, u,(y) is also presented in the form

w(y) = / @G — V) me()) + Gy = y)pyu(y)]dy. (4.12)
S0
Because integration here spreads over the region sy only, Eq. (4.12) defines the scattered field via the fields
ut and & inside the inclusion.
Let us consider the long distance asymptotic of the scattered field. Using a standard technique of the
evaluation of the integral in Eq. (4.12) (see Eringen and Suhubi, 1975; Bohren and Huffman, 1983) we
obtain that for large |y| the following equation holds:
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efikor

s y
u(y)NA(n)T, ﬂ:;, r=lyl, (4.13)
Aw) = iy e [L [ aweseay <20 [y e dy’] (4.14)
8n kO,u() K Po Js,

where A(n) is the far amplitude of the scattered field. If vector n has the direction of the wave vector
k” = kon® of the incident field, 4(n®) is the forward scattering amplitude. The long distance asymptotics of
the stress and strain scattered fields take the forms that follow from Eq. (4.13)
‘ ) eikor . eikor
8; = —lk()f’ll‘A (n) $7 J; = —lkoniﬂOA(ﬂ) W .
The total scattering cross-section of the inclusion Q(ky) is defined by the equation (see Eringen and
Suhubi, 1975)

(4.15)

Im[J (k - ~
O(ko) = M, J (ko) = / (071, + o}uo)n;dr, (4.16)
Koty r
where uy(y) and ¢%(y) are plane incident waves with the wave vector k” = kon’
Uy = efik0n0~y’ O'? = —ikoi’l?,uoeiikono‘y. (417)

Tildes in Eq. (4.16) mean the complex conjugations, I is a circle of a large radius R. It follows from Egs.
(4.13)—(4.15) that
_ ko gt
\/;
After substituting this equation into Eq. (4.16) and using the saddle-point method for the evaluation of the
integral J(ky) when R — oo, we go to the following expression for J (ko)

J (ko) = iptg/2mko [A(n‘))e*i“/4 +4 (n°)ei”/4} = —ipy/8mkoRe [A(n)e ™). (4.19)

Finally, for the total scattering cross-section Q(ky) in Eq. (4.16) we obtain the equation

O(ko) = —\/%Re [A(n°)e "], (4.20)

Thus, the cross-section Q(ko) is defined via the forward scattering amplitude 4(n°). (This is the optical
theorem for an infinite cylinder; see a similar theorem for electro-magnetic waves in Bohren and Huffman
(1983).)

From Egs. (3.5), (3.6), (3.10), (3.11) and (3.14) follows that the forward scattering amplitude 4(n°) in Eq.
(4.14) takes the form

(6%, + aSug)n; = [A(n)e Horeon™y 1 (n0 . )4 (n)ehore o), (4.18)

P K
A(n0> :lna2€1n/4 _O(ﬂ]-[c_&/lp)7 (4.21)
87\ 1y Po
where quantities H- and A, are
i H 0 1 : 0
H. — 0 . (v)eho 'y q A =— iko(n"¥) 4y, 4.22
= O 4= [y (4.22)

After substituting here u(y) = u*(y),e(y) = Qu"(y) from Eqgs. (4.4) and (4.6), where k, = ko, U, = Uy = 1,
we obtain for Q(ky) the following equation:
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Ho Po

Here A, and Hc have forms (4.8) if k., = k.
Using the technique presented in Bohren and Huffman (1983) it is possible to show that the short wave
limit of Q(ky) (ko — oo) takes the form (the paradox of extinction)
lim 20 _ 4 (4.24)

k—oo  TA T

O(ko) = nazkolm(ﬂHC - ﬁAp). (4.23)

The character of convergence of Q(k) to this limit may be seen from Fig. 1. Q(k) in this figure is

@(ko) = kO“(Z_;HC - Z_;Ap) = koazam (Z_(l)glm - ﬁ_(l)gm> . (425)

m=0

The case (a) corresponds to a heavy and hard inclusion (1, = 1, p, = 1, u = 100, p, = 10), the case (b) to a
soft and light inclusion () = 1, py = 1, = 0.01, py = 0.1). Thus, in the short wave limit (ko — oo) the
following equations for the real and imaginary parts of Q(ky) hold

ReO(k) — 0,  TmO(k) — % (4.26)
This result does not depend on the properties of the matrix and inclusion.
4.2. An approximate solution of the one particle problem
In a number of publications (Sabina and Willis (1988, 1993a,b) and others) an approximate solution of

the one particle problem (3.1) and (3.2) was used in the frame of the EMM. In this approximation elastic
fields u(y) and ¢(y) are assumed to be constant inside every inclusion. After substituting these constants

(@) ()
1 _l 1 1 1 1 1 1 1
2 15 -1 05 0o o5 1 lgkyd) 2 15 -1 05 0o 05 1 lgked

Fig. 1. The dependence of the normalized forward scattered amplitude O of shear waves on an isolated fiber on the frequency of the
incident field ky: (a) a hard and heavy cylindrical inclusion (yx, = 1, u = 100, p, = 1, p = 10); (b) a soft and light inclusion (g, = 1,
u=20.01,p,=1,p=0.1).
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into the right-hand sides of Egs. (3.1) and (3.2) and averaging the results over volume of the inclusion
(Galerkin’s scheme) we go to the following system of linear algebraic equations for u and g;

u="1u+p, 0gu, & =8 + Pyll & (4.27)
Here the overbear is the mean over the region sp,
gy == / dy/ G.(y=y)dy,  Py(y)=— / dy/ 0,0:G.(y — ') dy. (4.28)
So Js, 0 S0 Js 50
The equation
1
— / dy/ 0,G.(y—3y)dy =0 (4.29)
S0 S0 S0

that holds for a circular inclusion has been taken into account.
After calculating the integrals in Eqgs. (4.27) and (4.28) we obtain

1 in
() = o [EJO(k*r)k*aHl(Z)(k*a) +1/, (4.30)
F;Fk = 21_nJ1 (k*a)H1(2>(k*a)0ik> Ou = O —miny, m; = )ﬁa (4.31)
Hy r
— 1 —ik*y 2J] (k*a)
F=U— ‘ = U.h(k.a), a) = 4.32
u U, — Soe dy = U.h(k.a), h(k.a) fa (4.32)

and the solution of Eq. (4.27) takes the form

u=(1-p,0°g) hika)U., (4.33)
. -1
6= {1 ya -%”J] (k*a)le(k*a)} h(k.a)e', & = —ik U,. (4.34)
Finally, from Egs. (4.22) we obtain for A, and H the following approximate equations
A, = (1= p,0’g) W (ka), (4.35)
. —1
He = [1 _Ha .%Jl (k*a)Hfz)(k*a)} W (k.a). (4.36)

These equations serve only in the long wave region.

5. Solution of the dispersion equation in the long and short wave regions

In this section, we study asymptotic solutions of Egs. (3.16) and (3.17) in the long and short wave re-
gions. In the long wave region the wave number k is small (kya < 1), and only the main terms in the real
and imaginary parts of the coefficients a,, in Eq. (4.6) and coefficients g,,, g1, in Egs. (4.9) and (4.10) should
be taken into account. Because the main terms of the real and imaginary parts of the Bessel and Hankel
functions for small values of arguments are

2n

1 /z\" in o .z
Jn(Z)f%J<E) s EZHI']H(Z)FU—z l(n—1)|+lﬂm, (51)

the main terms of the coefficients a,,, g,., g1, take the forms



S.K. Kanaun, V.M. Levin | International Journal of Solids and Structures 40 (2003 ) 48594878 4869

. -1 . . -1
|y 17 2 k_f_ﬂ __21k* K _In 2
ag = {1 ) (ka) <k2 o« )} , ar =~ 1+ . 1 7 (k.a) ,

B ik
811 = %

The other coefficients a,,, g,,, g1,» may be neglected in the long wave region. As a result the main terms of the
quantities 4, and H¢ in Eq. (4.8) take the forms

g =1, 810 =0, (5.2)

A, =1 f%(k*a)zp*l , (5.3)
pa\ |, Lim p pa )

H- — 1 *1 1 =k, 2 Mx1 1 *1 ) 4

‘ ( +2u*> g k) u*< +2u* 54

Note that the approximate solution of the one particle problem presented in Section 4.2 gives the same
asymptotics for 4, and Hc in the long wave region (Eqs. (4.35) and (4.36) coincide with Eqs. (5.3) and (5.4)
for small kya).

After substituting Eqs. (5.3) and (5.4) into the dispersion equation (3.16) and (3.17) and taking into
account only the main terms in real and imaginary parts of its solution we obtain

_ ) —
b=k iy k—o /&7 » =P (ko) [pl(p : Ps) n #1(/; g | (5.5)
K 8 (n+ p)" = 2ppy

s

Here u, and p, are the “static” values of the effective shear modulus and density when w, ky = 0. These
parameters take the following forms
1= Ho)
ps=po+r(p=po)s  Bs=HoF 2pﬁ- (5.6)
The last equation is in fact an algebraic equation for the static shear modulus u,. This equation for the
effective shear moduli of fiber reinforced composites was firstly obtained in Hill (1965a). For the absolutely
rigid inclusions (¢ — o0) the solution of Eq. (5.6) is

Ko
and for cylindrical pores (u = 0)
e = (1 —=2p)uq. (5.8)

Note that these equations give physically reasonable values of u, (1, > 0) only for p < 0.5.

Let us consider the solution of the dispersion equations (3.16) and (3.17) of the EMM in the short wave
limit. In this case w, ky — oo, and as it follows from Eqgs. (4.8), (4.25) and (4.26) A,, Hc — 0. As a result, the
solution of the dispersion equations (3.16) and (3.17) for k, takes the following form:

A
k.= Mzko{l—g<&Hc—&Ap)]. (5.9)
Ho + prnHe 2\ 1o Po

Hence, when ky — oo the attenuation factor 7y is

p W P pO(ko)
— —Imk, =S koIm( 2Ll — 224, ) = , 5.10
! " 2" m(ﬂo ‘ Po ﬂ) 2na® (-10)
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where Q(ko) is the total scattering cross-section of the inclusion defined in Eq. (4.23). Taking into account
Egs. (4.25) and (4.26) we obtain for the short wave limits of the attenuation factor y and phase velocity v, of
the mean wave field the following equations:

lim 5 =75 = 2P 5.11

kolirolcy ’ na’ ( )
. BT w @_

W= Rek = Vo~ 312

Here we take into account that

koRe('u]HC - pl/l,,) 0 if ko — oo, (5.13)
Ko Po
Thus, the short wave limit of the velocity of the mean wave field coincides with the wave velocity in the
matrix vyg. The short-wave limit of the attenuation factor y does not depend on elastic properties of the
matrix and inclusions and is proportional to the volume concentration of inclusions p. This result may be
interpreted as follows. In the short wave limit the geometrical optic interpretation may be used for the
description of the mean wave field in the composite. The mean field may be considered as a set of inde-
pendent beams propagating through the medium. Because of existing a continuous component (matrix) the
phase velocity of the mean wave field should coincide with the wave velocity in the matrix. The attenuation
factor y in the short wave limit does not depend on the frequency of the incident field and on the properties
of the inclusions and is only a function of a number of scatterers in a unit length (see similar results for
elastic, scalar and electromagnetic waves in Bussemer et al. (1991) and Kanaun (1996, 1997, 2000)).
Note that for many materials attenuation at high frequencies is mainly defined by viscosity and non-
linear mechanisms that are not taken into account in this study.

6. The second version of the EMM

Version I of the EMM was applied to the calculation of the elastic moduli of composites with spherical
inclusions in Budiansky (1965) and Hill (1965b). It turns out that the corresponding formulas for the elastic
moduli of the composites with spherical inclusions do not correspond to experimental data in the region of
high volume concentrations of inclusions (p > 0.3) (see, e.g., Kanaun and Levin, 1994). In order to correct
the predictions of the EMM in this region another version of the EMM was proposed in Christensen and
Lo (1979). A similar version of the EMM was considered in Kerner (1956) also for the case of statics. In this
version (version II) the layer of the matrix material was involved in the border between the inclusion and
the effective medium. Thus, the main hypothesis (1) of the method was formulated as follows

1*. Every inclusion in the composite behaves as a kernel of a layered inclusion embedded in the effective
medium. The size and the properties of the kernel coincide with these characteristics of the inclusion, and the
properties of the outside layer coincide with the properties of the matrix.

The size of the outside layer depends on the volume concentration p of the inclusions. For cylindrical
inclusions with circular cross-sections the radius of the kernel @ and outside radius b of the matrix layer are
connected by the equation (Kerner, 1956; Christensen and Lo, 1979)

(%)2 - P (6.1)

The condition of self-consistency in this version coincides with hypothesis 2 of version I of the EMM.
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In this version the one particle problem is the diffraction of a plane monochromatic wave on a layered
inclusion embedded in a homogeneous effective medium. The differential equations of this problem are
similar to Eq. (4.1) (for the field inside the inclusion and in the effective medium). The field in the matrix
layer satisfies the equation Au + kZu = 0, a > |y| > b, with the conditions similar to (4.2) on the boundaries
of the layer. The same technique as in the case of a homogeneous inclusion gives us the following equations
for the wave field u(y) in the inclusion, the layer, and the medium

u(y)=u"(y) = zx: A (kr) cos(mp), 0<r<a, (6.2)
u(y) = i[cn,Jm(kor) + d,uN,, (kor)] cos(mep), a<r<b, (6.3)
u(y)=u (y) = i[em(—i)mU*Jm(k*r) + b,H,(k.r)| cos(mp), r>b. (6.4)

Here N,,(z) is the Bessel function of the second kind and of the order m. The constants a,,, b, ¢,, and d,, are
to be found from the boundary conditions on the interfaces » = a and » = b that are similar to Eq. (4.2).
These conditions give us a system of linear algebraic equations for the constants in Egs. (6.2)—(6.4), which
solution takes the form

4= 7 (B~ Bafl), by =~ (Buty ~ Bodn), (6.5)
Cm = %%Anam dy = —TZOAZMW (6.6)
A = AnAxpn — AppAa, (6.7)
An = pokoad,,(ka)N (koa) — pkaJ! (ka)N,, (koa), (6.8)
Ay = kN, (kob)H' (k.b) — pigkobHy (k.B)N', (kob), (6.9)
Ar = pokoat,,(ka)J, (koa) — wkal, (ka)J,,(koa), (6.10)
Aoy = kb (kob)H' (k) — pioobHy (k.b)T" (kob), (6.11)
B1 = en(—1)" U. [ttohobJu(k.B)N (kob) — pt.k.bJ" (k)N (kob)], (6.12)
By = e (—1)" U. [ttohobJu (kD). (kob) — kb (k.5)Jyn (kob)]. (6.13)

The dispersion equation of version I of the EMM is similar to the dispersion equation of version I and has
the form of Eqgs. (3.16) and (3.17). The functions 4, and H¢ in (3.16) and (3.17) are given by Eqs. (4.8)—
(4.10), where the coefficients a,, should be taken from Eq. (6.5).

Let us consider the solution of the dispersion equation of this version of EMM in the long wave region
when kpa < 1. Using Eq. (5.1) one can find the main terms of the coefficients a,, in Eq. (6.5) in the forms

in v?
=1+ @ {1-2 0= pe |

* U()
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ar = —T#oﬂ*

8ik,
4

aio Jrl—n(k*b)zan} (6.14)

aro = {p[(1+p)uo + (1 = p)] + wo[(1 = phg + (1 + )]},

an = ajo{ul(1 +p)ig — (1 = p)pe.] + (1 = p)tg — (1 + p)p.]}- (6.15)
As a result, the functions 4, and H¢ in Eqgs. (3.16) and (3.17) for version II of the EMM take the forms

. . B
_1 _1_7T<k*b)2( PPy +pp—p.

4 ;
! 4 p.

(6.16)

in
HC = 4:“0/"* |:a|0 + Z (k*b)2a11:| . (617)

In the long wave region the main terms of the effective shear modulus p, and the effective density p, should
be found in the forms

in in 0,
My = Hg + Z (ksb)zluuﬂ Ps = Ps + Z (ksb)zpan kS = w\/—'u:7 (618)

where pg, p, are “static” values of these parameters (w = 0). The main term in the real and imaginary parts
of functions 4, and H¢ in Eqgs. (6.16) and (6.17) are

. L B
A =1 —l—n(ksb)Z( P)Po+pp — ps

4 Ps
4pto i, i d
e =0 |1 T o (M, 4~ )| (6.19)
o K
di=0+pu+A-puy, a=0-pu+1+pu, 4= pd + pd. (6.20)

After substituting Eq. (6.19) into Eqgs. (3.16) and (3.17) we obtain
ps=pp+ (1 =p)po, P, =p% lpp + (1 = p)po — p] = 0. (6.21)

Thus, the imaginary part of the dynamic density p,, in Eq. (6.18) turns to be equal to zero. It means that
the series of the dynamic density with respect to frequency w does not contain terms proportional to w?.
From Egs. (3.16), (3.17) and (6.19) we also obtain that the static shear modulus g satisfies the equation

4 :
= w1475 ) (622)
and the imaginary part of the modulus u, in Eq. (6.18) takes the form
-1
T 2 _ Ho
Im(u) = 7 (60 1oy oy = (o — psch) [1 — 4pdy (Z) ] : (6.23)

Here coefficients d; and 4, are defined in Eq. (6.20). Eq. (6.22) is a square algebraic equation for the
modulus . It is easy to show that the only positive root of this equation is

N 2p(p — 1)
RS et el (624
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Eq. (6.24) coincides with one of the well known Hashin—Strikman bounds for the effective shear modulus
of the fiber composites (see Talbot and Willis, 1983). This equation also coincides with the result of ap-
plication of another self-consistent method (the effective field method) to the problem under consideration
(see Kanaun and Levin, 1993). Eq. (6.24) gives physically reasonable values of the effective shear modulus
(us > 0) for all possible values of the volume concentrations of fibers and elastic properties of the latter.

Theoretical dependences of the shear modulus p, of a composite reinforced with cylindrical fibers on
volume concentrations of the fibers p are compared with experimental data in Fig. 2. The composite with
o =2.03 GPa, £ =12.5 GPa and 0 < p < 0.8 is considered. The solid line in Fig. 2 is the prediction of
version | of the EMM (Eq. (5.6)); the line with circles is the predictions of version II (Eq. (6.24)), squares
are experimental data given in Dean and Lockett (1973). It is seen that the predictions of version II are
closer to the experimental data than the predictions of version I in the region of high volume concentrations
of inclusions.

After substituting Eq. (6.24) into the right-hand side of Eq. (6.23) we obtain that the imaginary part of
the dynamic shear modulus u, disappears (g, = 0). It follows from this equation and Eq. (6.21) (p, = 0)
that the series of the imaginary part of the effective wave number £, (or the attenuation factor) with respect
to o begins with the terms of the order higher than »® (y = o(w?*)). Thus, version II of the EMM does not
describe the attenuation caused by the Rayleigh scattering of waves on inclusions that is proportional to w?.
This conclusion is independent of the volume concentration p of inclusions and their properties.

Note that in the literature exists another version of the EMM (version III) (see, e.g., Stroud and Pan,
1978). In this version hypothesis 1 coincides with hypothesis 1* of version II but the condition of self-
consistency (hypothesis 2) is formulated as following.

2*. The parameters of the effective medium are to be chosen in order to eliminate the forward amplitude of
the wave field scattered on the layered inclusion embedded in the effective medium.

As it follows from Egs. (4.13), (4.14) and (6.4) the forward amplitude 4(n°) of the field scattered on the
layered inclusion takes the form

|
s, GPa
6 L
|
|
4 L
2
0 0.2 0.4 0.6 p

Fig. 2. The dependences of the static elastic shear modulus u, = p of the fiber composites on volume concentrations of inclusions p; the
solid line corresponds to version I the EMM, the line with dots to version II, squares are experimental data in Dean and Lockett
(1973).
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0 - in
A’) = mz:%bm exp{ 7 (m+ 1)} (6.25)

According to hypothesis 2* the properties of the effective medium should be taken in order to eliminate
the right-hand side of this equation. It is not difficult to realize this version of the EMM using Eq. (6.25). It
turns out that the predictions of this version are very close to the predictions of the version II of the EMM
developed in this study.

Let us show that version III also does not describe attenuation caused by Rayleigh wave scattering on
inclusions. In the long wave region the main term of the right-hand side of Eq. (6.25) takes the form

A(n®) = by — 2b; + in(bk,)* (b2 — 2b7), (6.26)

1 tods — . da
= —pp—(1— Y T a e e
1 lp. —pp — (1 —p)py] 'S di T dh

Here coefficients d and ¢, are defined in Eq. (6.20). If p, = p,, u, = u,, where p, and p, are given in Egs.
(6.21) and (6.24), the coefficients by, b, in Eq. (6.26) turn to be equal to zero. It means that the roots of the
equation 4(n’) = 0 in the long wave region are the static density and elastic modulus of the composite given
in Egs. (6.21) and (6.24). In the other words, the main terms of the dynamic density and shear modulus in
the long wave region do not contain terms proportional to w?. Thus, version III of the EMM, similar to
version II, predicts that the main term of the imaginary part of the effective wave number (attenuation
factor) has the order higher than o?.

by

7. Numerical solution of the dispersion equation

In this section, we construct numerical solutions of the dispersion equations (3.16), and (3.17) of the
EMM in the region 0 < kpa < 100 of the wave numbers of the incident field. In the calculations we take
to =1, py =1, a =1 and for these data parameter kya coincides with the frequency w of the incident field.
The numerical solution is obtained by the iterative procedure based on the equations that follow from Egs.
(3.16) and (3.17)

1 =Y g — po (1 + pry He (kY 1)),
pl" = plV 4 g[p" D — po[1 + pp A, (K", 1=,

N
n P _ _H — _p
ki)iw ) ) = lv P = 1'
s Ho Po

(7.1)

Here k", u™, p are the effective parameters for the nth iteration; functions Hc(k., i) and A, (k., p,) are
defined in Eqgs. (4.8)—(4.10). Parameter ¢(|¢| < 1) is to be chosen for conversion of the iterative process. For
version | of the EMM the coefficient a,, in Egs. (4.8)—(4.10) are defined in Eqs. (4.6) and (4.7), and for
version II a, are given in Egs. (6.5)-(6.13). As an initial (zero) approximation we use the static solution
for u, (W% = p,) given in Eq. (5.6) and the equation k%) = w+/(p, + pp,)/p, for the effective wave number.

The dependences of the velocities and attenuation factors of the mean wave field on the frequency of the
incident field and volume concentrations of inclusions are presented in Figs. 3 and 4(a)—(c). In these figures
solid lines correspond to version I of the EMM, the lines with circles to version II, and the lines with
triangles correspond to version I when the approximate solution of the one particle problem (see Section
4.2) is used. The cases of hard and heavy inclusions (1/y, = 100, p/p, = 10) are in Fig. 3(a)—(c) (for three
values of the volume concentrations of fibers p = 0.1;0.3;0.5), and the cases of soft and light inclusions
(u/py =0.01, p/p, = 0.1) are in Fig. 4(a)—(c). Horizontal dashed lines in Figs. 3 and 4(a)—(c) are the short
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Fig. 3. (a) The dependences of attenuation factors y and velocities of the mean wave field v in the composites with hard and heavy
inclusions (g, = 1, u = 100, p, = 1, p = 10) on the frequency of the incident field, volume concentration of fibers p = 0.1. Solid lines
corresponds to the first version of the EMM, lines with dots to the second version of the EFM, lines with triangles correspond the first
version and approximate solution of the one particle problem; (b) the same graphs as in Fig. 3a for p = 0.3; (c) the same graphs as in
Fig. 3a for p = 0.5.
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Fig. 4. (a) The dependences of attenuation factors y and velocities of the mean wave field v in the composites with soft and light
inclusions (1, = 1, £ = 0.01, p, = 1, p = 0.1) on the frequency of the incident field, volume concentration of fibers p = 0.1. Solid lines
corresponds to the first version of the EMM, lines with dots to the second version of the EFM, lines with triangles correspond the first
version and approximate solution of the one particle problem; (b) the same graphs as in Fig. 4a for p = 0.3; (c) the same graphs as in
Fig. 4a for p=0.5.
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wave limits of the attenuation factors and of the mean wave velocities for the considered volume con-
centration of inclusions (see Egs. (5.11), and (5.12)). Note that short wave limits of v, and y are practically
achieved for kya = 30.

8. Discussion and conclusion

The analytical and numerical results obtained in previous sections allow us to compare the predictions of
versions I and II of the EMM in a wide region of frequencies of the incident field, volume concentrations
and properties of inclusions. In the cases of contrasted matrix and inclusions (u/u,, p/p, > 10 or
W/ o, p/ Py < 0.1) and for small volume concentrations of the latter (p < 0.2) both methods give close re-
sults for the velocities of the mean wave fields in the composites. But these versions predict quite different
behavior of the attenuation factor y of the mean wave field in the long wave region. In this region y has the
order of w® for the first version of the EMM and the order of @’° for the second version. As a result, the
corresponding dependences of y on &, have different slopes in the logarithmic scale (see Figs. 3 and 4(a)—(c)).
Thus, version II does not describe Rayleigh scattering of waves on inclusions that takes place in any
homogeneous medium with a random set of isolated inclusions in the long wave region. In the middle and
short wave regions both versions of the EMM give close results for the attenuation factors.

The algorithm of the EMM is simplified essentially if the approximate solution of the one particle
problem is used (Section 4.2). The EMM with the approximate and exact solutions of the one particle
problem give close predictions for the velocities and attenuation factors of the mean wave field in the long
wave region (kpa < 1), but these predictions deviate in the short wave region. The approximate solution is
based on the assumption that the wave field inside every inclusion is constant. This assumption is evidently
violated in the short and middle wave regions. As a result, in these regions the field inside an inclusion and
the field scattered by an inclusion are calculated with essential error. In fact, an inclusion scatters more
energy than the approximate solution predicts. This error increases with the frequency, and as a result, the
attenuation factor decreases instead of being constant in the short wave region (see Figs. 3 and 4(a)—(c)).
Nevertheless the approximate solution describes the dependences of the velocity of the mean wave field on
frequency in all frequency regions sufficiently well.

Essential discrepancies of two versions of the EMM may be observed for high volume concentrations of
inclusions (p > 0.3) in the low and middle wave region (kpa < 5). In the long wave region the velocity of the
mean wave field is mainly defined by static elastic properties of the composite. As it was shown in Section 6,
version II of EMM corresponds better to experimental data in case of statics. Thus, one can expect that the
predictions of this version for the velocities of the mean wave field are more reliable than the predictions of
version I in the long wave region if p > 0.3.

The most abrupt changes in the dependences of the velocity of the mean wave field on frequency are
observed in the region where kpa = O(1). This is the region of the first quasi-resonance of an isolated in-
clusion in homogeneous matrix (see the first maxima in the frequency dependences of the total scattering
cross-section of isolated inclusions in Fig. 1). After that, in the middle wave region, the structure of the
mean wave field becomes more complex, and one observes more oscillations in the frequency dependences
of the velocity in this area. But the changes near the first quasi-resonance are stronger than in any other
region. Experiments show a similar behavior of the frequency dependences of the velocity of the mean wave
field in the composites with spherical inclusions (see Sabina and Willis, 1988).

If the inclusions and matrix have less contrast 0.1 < u/p,, p/p, < 10, the predictions of both versions of
the EMM for the velocities of the mean wave field become closer, and the process of numerical solution of
the dispersion equation (see Section 7) needs less iterations. Nevertheless the predictions of the two version
of the EMM for attenuation factors in the long wave region are different even for non-contrasted matrix
and inclusions.
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As a final conclusion one can make the following points. The EMM is an efficient way to calculate the
velocities and attenuation factors of the mean wave fields in fiber reinforced composite materials. The
algorithm of calculation of these parameters is fast, simple, and does not create difficulties in programming.
The predictions of version I of the EMM are reliable only in the region of small volume concentrations of
inclusions (p < 0.2). The error of the calculation of the velocities as well as the attenuation factors increases
with the volume concentration of inclusions if this version is used. Version II of the EMM improves the
predictions of the velocities of the mean wave field in the region of high volume concentrations of inclusions
but attenuation factors in the long wave region are calculated with essential errors.

It is necessary to note that an inevitable defect of all the versions of the EMM is their inability to describe
the influence of the peculiarities in spatial distributions of inclusions in the matrix on the effective properties
of the composite material. Such a description is possible in the framework of another self-consistent
scheme: the so-called effective field method (see Kanaun and Levin, 1993, 1994; Kanaun, 2000).
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