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Abstract

The effective medium method (EMM) is applied to the solution of the problem of monochromatic elastic shear wave

propagation through matrix composite materials reinforced with cylindrical unidirected fibers. The dispersion equa-

tions for the wave numbers of the mean wave field in such composites are derived using two different versions of the

EMM. Asymptotic solutions of these equations in the long and short wave regions are found in closed analytical forms.

Numerical solutions of the dispersion equations are constructed in a wide region of frequencies of the incident field that

covers long, middle and short wave regions of the mean wave field. Velocities and attenuation factors of the mean wave

fields in the composites obtained by different versions of the EMM are compared for various volume concentrations

and properties of the inclusions. The main discrepancies in the predictions of different versions of the EMM are in-

dicated, analyzed and discussed.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Fiber composites; Wave propagation; Phase velocity; Attenuation factor; Self-consistent methods
1. Introduction

The problem of the monochromatic wave propagation through composite materials has many important
applications. The solution of this problem allows us to predict the response of composite materials to

various types of dynamic loading; this problem is a theoretical background of the non-destructive analysis

of microstructures of composites by using ultrasonic technique. The main objectives of the theory in this

problem are the dependence of the phase velocity and attenuation factor of the mean wave field propa-

gating through the composite on the frequency of the incident field (dispersion curves) and on the details of

the composite microstructure. For the composite materials with random microstructures this problem can

not be solved exactly and only approximate solutions are available. The effective medium method (EMM) is

widely used for the construction of such approximate solutions of the elastic wave propagation problem
* Corresponding author. Tel.: +52-5864-5665; fax: +52-5864-5651.

E-mail address: kanaoun@campus.cem.itesm.mx (S.K. Kanaun).

0020-7683/03/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0020-7683(03)00179-3

mail to: kanaoun@campus.cem.itesm.mx


4860 S.K. Kanaun, V.M. Levin / International Journal of Solids and Structures 40 (2003) 4859–4878
(see e.g., Sabina and Willis, 1988, 1993a,b; Jin-Yeon et al., 1995; Kanaun, 1996, 1997 and others). In the

case of composites with spherical inclusions the predictions of the EMM are in agreement with known

experimental data (see Sabina and Willis, 1988; Jin-Yeon et al., 1995).

In the literature there exist several different versions of the EMM, and one can say that the EMM is a
group of self-consistent methods joined by a common hypothesis that for the construction of the wave field

inside a typical inclusion in the composite the inhomogeneous material outside some vicinity of this in-

clusion may be changed for the homogeneous medium with effective (overall) properties of the composite.

The analysis of various versions of the EMM in the case of electromagnetic wave propagation through

heterogeneous media is presented in Kanaun (2000).

For the application of the EMM to the solution of the problem of elastic wave propagation through

composite materials one has to understand the differences in predictions of various versions of the method,

the character of possible errors and the area of application of every version. In this work we consider the
propagation of monochromatic elastic shear waves in the composites with infinite unidirected cylindrical

fibers when the wave vector of the incident field is orthogonal to the fiber directions and the polarization

vector coincides with this direction (the axial shear waves). For this type of the waves we develop

the version of the EMM that is similar to the one proposed by Budiansky (1965) and Hill (1965a,b) for the

calculation of static properties of composite materials (version I). In this version every inclusion in the

composite is considered as an isolated one embedded in the homogeneous medium with the effective

properties of the composite. Another version of the EMM that corresponds better to experimental data was

proposed in the works of Kerner (1956) and Christensen and Lo (1979). In this version a layer of matrix
material was involved in the border between the effective medium and the inclusion (version II).

In the work these two versions of the EMM are generalized for the dynamic case. In Section 3, we

develop a general dispersion equation of both versions of the EMM that serves for all frequencies of the

incident field. The solutions of the dispersion equations give us the velocities and attenuation factors of the

mean wave field propagating through the composite medium. Every version of the EMM reduce

the problem of interactions between many inclusions in the composite to a specific one particle problem.

Exact solutions of the one particle problems of two versions of the EMM are presented in Sections 4 and 6.

In Section 4.2, we construct an approximate solution of the one particle problem that serves only in the
long wave region. A similar approximation was used for the solution of the problem of long elastic wave

propagation through particulate composite materials in Sabina and Willis (1988, 1993a,b).

Note that in the literature the EMM was used for the calculation of the wave velocities and attenuation

factors of the mean wave field in the long and middle wave regions, where the wavelength of the mean wave

field is more than a typical size of inclusions or is compared with the latter. In this work we consider the

solutions of the dispersion equations of the EMM in a wide region of frequencies that covers long, middle

and short wave regions. In the long and short wave regions we find asymptotic solutions of the dispersion

equations in closed analytical forms (Sections 5 and 6). Numerical solutions of the dispersion equations of
both versions of the EMM are obtained and compared in Section 7. The cases of the composites with

contrast properties of components are considered. The discussion of the discrepancies in the predictions of

various versions of the EMM in a wide region of frequencies of the incident field and volume concentra-

tions of inclusions is presented in Section 8.
2. Integral equations of the diffraction problem

Let us consider an infinite homogeneous medium (matrix) with elastic moduli tensor C0 and density q0
containing a random set of continuous cylindrical fibers directed along x3-axis. C and q are the elastic

moduli tensor and density of the fibers. If a monochromatic axial shear wave of frequency x propagates in
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such a composite, and the dependence on time is defined by the multiplier eixt, only the component u3 of the
amplitude of the displacement field uiðxÞ is not equal to zero (‘‘antiplane’’ strain state)
u1 ¼ u2 ¼ 0; u3ðxÞ ¼ uðyÞ; x ¼ xðx1; x2; x3Þ; y ¼ yðx1; x2Þ ð2:1Þ
and the equation of motion takes the form
oiCi3j3ðyÞojkuðyÞ þ qðyÞx2uðyÞ ¼ 0; oi ¼
o

oxi
: ð2:2Þ
The components Ci3j3ðyÞ ¼ lðyÞdij of the elastic moduli tensor CijklðyÞ of the medium and its density qðyÞ
may be presented as the following sums:
lðyÞ ¼ l0 þ l1SðyÞ; qðyÞ ¼ q0 þ q1SðyÞ; l1 ¼ l � l0; q1 ¼ q � q0: ð2:3Þ
Here lðyÞ is the elastic shear modulus in the direction of the fibers, SðyÞ is the characteristic function of
the region S occupied by the inclusions (SðyÞ ¼ 1 if y 2 S, SðyÞ ¼ 0 if y 62 S). After substituting Eq. (2.3) into
Eq. (2.2) the latter takes the following form:
l0DuðyÞ þ q0x
2uðyÞ ¼ �l1oi½eiðyÞSðyÞ	 � x2q1uðyÞSðyÞ; ð2:4Þ
where D ¼ o2=ox21 þ o2=ox22 is the Laplace operator, eiðyÞ ¼ oiuðyÞ. Applying the operator ðl0D þ q0x
2Þ�1 to

both sides of this equation we obtain the integral equation for the displacement field uðyÞ in the form
uðyÞ ¼ u0ðyÞ þ
Z

oiGðy � y 0Þl1eiðy0ÞSðy0Þdy 0 þ x2

Z
Gðy � y0Þq1uðy0ÞSðy0Þdy 0: ð2:5Þ
Here u0ðyÞ is the incident field that would have existed in the medium without inclusions (l1 ¼ 0, q1 ¼ 0).

GðyÞ is the Green function of the operator l0D þ q0x
2. The equation for this function and its solution have

the forms (see Eringen and Suhubi, 1975)
ðl0D þ q0x
2ÞGðyÞ ¼ �dðyÞ;
GðyÞ ¼ � i

4l0
H0ðk0rÞ; r ¼ jyj; k0 ¼ x

ffiffiffiffiffi
q0
l0

r
; ð2:6Þ
where dðyÞ is Dirac�s delta-function, H0ðzÞ is the Hankel function of the second kind and zero-order.
Integration in Eq. (2.5) is spread over entire 2D-space. Note that the Fourier transform of the function GðyÞ
has the form
GðkÞ ¼ L�1
0 ðkÞ; L0ðkÞ ¼ l0k

2 � q0x
2; k ¼ jkj; ð2:7Þ
where kðk1; k2Þ is the vector parameter of the Fourier transform. (We denote the Fourier transforms of
functions by the same letter with the other argument only.)

The incident field u0ðyÞ in Eq. (2.5) is a plane shear wave with the wave vector k0 ¼ k0n0 that is
orthogonal to x3-axis. For such a field we have
u0ðyÞ ¼ U0e
�ik0�y; e0i ðyÞ ¼ oiu0ðyÞ ¼ �ik0n0i U0e

�ik0�y: ð2:8Þ
The equation for the strain field eiðyÞ follows from Eq. (2.5) in the form
eiðyÞ ¼ e0i ðyÞ þ
Z

½oiokGðy � y0Þl1ekðy0Þ þ x2oiGðy � y 0Þq1uðy0Þ	Sðy0Þdy 0: ð2:9Þ
Note that the multiplier SðyÞ in the right-hand sides of Eqs. (2.5) and (2.9) cuts the functions uðyÞ and
eðyÞ in the region occupied by the inclusions. Thus, the main unknowns of the problem are the fields inside
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inclusions. If these fields are known, the wave fields in the matrix may be reconstructed from Eqs. (2.5) and

(2.9).
3. General scheme of the basic version of the EMM

If the incident field is a plane monochromatic wave, the field propagating in the composite with a

random set of cylindrical fibers will be a non-plane random field. Our objective is to evaluate the mean

value of this field. Strictly speaking, in order to construct the mean wave field one has to solve the wave

problem for every realization of the random set of inclusions and then to average the obtained solutions

over the ensemble of realizations of this set. The difficulties of this problem oblige us to find its approximate

solution. In this work we use the effective medium method for the construction of such a solution.

Let us consider a realization of a homogeneous random set of inclusions in the matrix. In order to find
the mean wave field in the composite we accept the following two hypotheses:

1. Every inclusion in composite behaves as isolated one embedded in the homogeneous medium with the effec-

tive properties of the composite. The field that acts on this inclusion is a plane wave propagating in the

effective medium.

2. The mean wave field in the composite coincides with the field propagating in the homogeneous effective

medium.

These two hypotheses correspond to the version of the EMM proposed by Budiansky (1965) and Hill

(1965a,b) for the calculation of static elastic moduli of composite materials.

The first hypothesis reduces the problem of interactions between many inclusions in the composite to a

one particle problem. This problem is diffraction of a plane shear monochromatic wave on an isolated fiber

embedded in the effective homogeneous medium with the properties l
, q
. The integral equations of this

problem are similar to Eqs. (2.5) and (2.9) and have the forms
uðyÞ ¼ u
ðyÞ þ
Z
s0

½oiG
ðy � y0Þl
1eiðy0Þ þ x2G
ðy � y0Þq
1uðy 0Þ	dy 0; ð3:1Þ
eiðyÞ ¼ e
i ðyÞ þ
Z
s0

½oiojG
ðy � y 0Þl
1ejðy 0Þ þ x2oiG
ðy � y 0Þq
1uðy 0Þ	dy 0: ð3:2Þ
Here s0 is the area of the fiber cross-section, G
ðyÞ is the Green�s function of the homogeneous medium
with the effective properties l
 and q
 of the composite, l
1 ¼ l � l
, q
1 ¼ q � q
. The displacement u


ðyÞ
and strain e
i ðyÞ are plane waves with the wave vector k
 propagating in the effective medium
u
ðuÞ ¼ U
e
�ik
�y; e
j ðyÞ ¼ �ik
j U
e

�ik
�y; k
 ¼ k
n; k
 ¼ x
ffiffiffiffiffi
q

l


r
: ð3:3Þ
If the distribution of fibers in the matrix is homogeneous and isotropic, the effective medium is trans-

versely isotropic, and the effective wave vector k
 and the wave vector k0 of the incident field have the same

direction.
Let the general solution of Eqs. (3.1) and (3.2) be known, and the fields uðyÞ and eiðyÞ inside the inclusion

with the center at point y0 ¼ 0 be presented in the form
uðyÞ ¼ ðKu
ÞðyÞ ¼ K½U
e
�ik
�y	; eiðyÞ ¼ oiðKu
ÞðyÞ: ð3:4Þ
Here K is a linear operator that depends on the dynamic properties of the effective medium and inclusion.



S.K. Kanaun, V.M. Levin / International Journal of Solids and Structures 40 (2003) 4859–4878 4863
If the inclusion occupies area S0 with the center at a point y0 6¼ 0 one can present the field uðyÞ inside such
an inclusion in the form (y 2 S0)
uðyÞ ¼ K½U
e
�ik
�ðy�y0Þe�ik


�y0 	 ¼ K½e�ik
�ðy�y0Þ	U
e
�ik
�y0 ¼ K½e�ik
�ðy�y0Þ	eik
�ðy�y0ÞU
e

�ik
�y

¼ Kuðy � y0Þu
ðyÞ; KuðzÞ ¼ K½e�ik
�z	eik
�z: ð3:5Þ
In the same way for the field eiðyÞ ¼ oiuðyÞ we have
eiðyÞ ¼ oiK½U
e
�ik
�ðy�y0Þe�ik


�y0 	 ¼ Ke
i ðy � y0Þu
ðyÞ;

Ke
i ðzÞ ¼ ðoiK½e�ik
�z	Þeik
�z: ð3:6Þ
Here we take into account linearity of the operator K. Note that the functions KuðzÞ and Ke
i ðzÞ do not

depend on the position y0 of the center of the inclusion. These functions may be constructed from the

solution of the one particle problem for the inclusion centered at point y ¼ 0.
Let us introduce stationary random functions kuðyÞ and keðyÞ in 2D-space. These functions coincide with

Kuðy � yiÞ and Keðy � yiÞ if y is inside the inclusion centered at point yi ði ¼ 1; 2; 3; . . .Þ, and they are equal to
zero in the matrix. Using these functions and hypothesis 1 of the EMM one can present the wave field uðyÞ
in the composite in the form that follows from Eqs. (2.5), (3.5) and (3.6)
uðyÞ ¼ u0ðyÞ þ
Z

oiGðy
�

� y0Þl1ke
i ðy0Þu
ðy0Þ þ x2Gðy � y0Þq1kuðy0Þu
ðy0Þ

�
Sðy0Þdy 0: ð3:7Þ
Here u
ðyÞ ¼ U
e
�ik
�y is a plane wave with the effective wave vector k
.

In order to find the mean value of the random wave field uðyÞ let us average both parts of Eq. (3.7) over
ensemble realizations of the random set of inclusions and take into account the condition of self-consis-

tency (hypothesis 2)
u
ðyÞ ¼ huðyÞi: ð3:8Þ

As a result we obtain the integral equation for the mean wave field huðyÞi in the form
huðyÞi ¼ u0ðyÞ þ p
Z

½oiGðy � y 0Þl1KC
i þ x2Gðy � y0Þq1Kq	huðy0Þidy0; ð3:9Þ

Kqðk
Þ ¼
1

pX
lim
X!1

Z
X

kuðyÞdy ¼ 1

hsi

Z
s

KuðyÞdy
� �

; ð3:10Þ

KC
i ðk


Þ ¼ 1

pX
lim
X!1

Z
X

ke
i ðyÞdy ¼

1

hsi

Z
s

Ke
i ðyÞdy

� �
: ð3:11Þ
Here Kq and KC
i are constant (with respect to spatial coordinates) scalar and vector, X is an arbitrary

region that occupies entire 2D-plane (x1; x2) in the limit X ! 1, p is the volume concentration of inclusions,
s is the area occupied by a typical inclusion. The averaging in Eqs. (3.10) and (3.11) is over the ensemble of
realizations of random sizes of inclusions.

Let us apply the Fourier transform to Eq. (3.9) and multiply the result with L0ðkÞ ¼ l0k
2 � q0x

2. Taking

into account the equations
L0ðkÞGðkÞ ¼ 1; L0ðkÞu0ðkÞ ¼ 0 ð3:12Þ

that follow from Eqs. (2.7) and (2.8), we obtain the equation for huðkÞi in the form
L
ðkÞhuðkÞi ¼ 0; L
ðkÞ ¼ L0ðkÞ þ pl1ikiK
C
i ðk
Þ � pq1x

2Kqðk
Þ: ð3:13Þ
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Because vector KC
i in Eq. (3.11) is a function of the vector k


 only, KC
i may be written in the form
KC
j ðk


Þ ¼ �ik
j HCðk
Þ; k
 ¼ jk
j; ð3:14Þ
where HCðk
Þ is a scalar function. If the mean wave field huðyÞi is a plane wave (huðyÞi ¼ U
e
�ik
�y), its

Fourier transform is huðkÞi ¼ ð2pÞ2U
dðk� k
Þ, and Eq. (3.13) takes the form L
ðkÞdðk� k
Þ ¼ 0 or
L
ðk
Þ ¼ L0ðk
Þ þ pl1ðk
Þ
2HCðk
Þ � pq1x

2Kqðk
Þ ¼ 0: ð3:15Þ
This equation may be also written in the form
l
ðk
Þk2
 � q
ðk
Þx2 ¼ 0; ð3:16Þ

l
ðk
Þ ¼ l0 þ pl1HCðk
Þ; q
ðk
Þ ¼ q0 þ pq1Kqðk
Þ: ð3:17Þ
Eq. (3.16) is the dispersion equation for the effective wave number k
 of the mean wave field in the
composite. The functions HC and Kq are to be found from the solution of the one particle problem (3.1),

(3.2). Thus, Eqs. (3.16) and (3.17) are the system for the effective parameters l
, q
, k
 of the composite in
the framework of the EMM. The phase velocity v
 and attenuation factor c of the mean wave field huðyÞi
are connected with the wave number k
 by the equations
v
 ¼
x

Reðk
Þ
; c ¼ �Imðk
Þ: ð3:18Þ
4. The solution of the one particle problem

4.1. The exact solution

The one particle problem of the EMM is the solution of the integral equations (3.1) and (3.2) if s0 is a
disk of radius a centered at point y ¼ 0. The integral equation (3.1) for uðyÞ is equivalent to the following
system of differential equations:
uðyÞ ¼ uþðyÞ; jyj < a; uðyÞ ¼ u�ðyÞ; jyj > a

Duþ þ k2uþ ¼ 0; jyj < a; k2 ¼ qx2

l
;

Du� þ k2
u
� ¼ 0; jyj > a; k2
 ¼

q
x
2

l


ð4:1Þ
with the conditions on the boundary of s0 (r ¼ a)
uþða;uÞ ¼ u�ða;uÞ; l
ouþðr;uÞ

or

����
r¼a

¼ l

ou�ðr;uÞ

or

����
r¼a

: ð4:2Þ
Here r and u are the polar coordinates in the y-plane with the origin at the center of the inclusion. The
field u�ðyÞ should satisfy the radiation condition at infinity
u�ðyÞ � u
ðyÞ �
expð�ik
rÞffiffi

r
p ; r ¼ jyj ! 1; ð4:3Þ
where u
ðyÞ is the incident field.
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The solution of this problem has the form (see Eringen and Suhubi, 1975)
uþðyÞ ¼ U

X1
m¼0

amJmðkrÞ cosðmuÞ; ð4:4Þ
u�ðyÞ ¼ u
ðyÞ þ U

X1
m¼0

bmHmðk
rÞ cosðmuÞ; ð4:5Þ
u
ðyÞ ¼ U
 expð�ik
 � yÞ ¼ U

X1
m¼0

½�mð�iÞmJmðk
rÞ	;
where �m ¼ 1 if m ¼ 0, �m ¼ 2 if m > 0, JmðzÞ are Bessel functions and HmðzÞ are Hankel functions of the
second kind. The coefficients am in Eq. (4.4) take the forms
am ¼ ð�iÞm�m
l
k

Dm

; ð4:6Þ
Dm ¼ ip
2
k
a½l
k
H

0
mðk
aÞJmðkaÞ � lkHmðk
aÞJ 0

mðkaÞ	; f 0ðzÞ ¼ df
dz

: ð4:7Þ
After substituting Eq. (4.4) into Eqs. (3.10), (3.11), and (3.14) for Kq and HC we obtain
Kq ¼
X1
m¼0

amgm; HC ¼
X1
m¼0

amg1m; ð4:8Þ
gm ¼ 2im

a
� 1

k2 � k2

½kJmþ1ðkaÞJmðk
aÞ � k
JmðkaÞJmþ1ðk
aÞ	; ð4:9Þ
g1m ¼ gm þ 2im

ak

JmðkaÞJ 0

mðk
aÞ; J 0
mðzÞ ¼

dJmðzÞ
dz

: ð4:10Þ
The wave field (4.5) outside the inclusion consists of two parts: the incident field u
ðyÞ and the field usðyÞ
scattered on the inclusion. Let us consider the diffraction of a plane wave propagating in the original matrix

(k
 ¼ k0; u0ðyÞ ¼ U0 expð�ik0 � yÞ) on an isolated cylindrical inclusion. In this case the field usðyÞ takes the
form
usðyÞ ¼ uðyÞ � u0ðyÞ ¼ U0

X1
m¼0

bmHmðk0rÞ cosðmuÞ; jyj > a: ð4:11Þ
On the other hand, the field scattered on the inclusion is the integral terms in Eq. (3.1), where the effective

medium should be replaced with the original matrix. Thus, usðyÞ is also presented in the form
usðyÞ ¼
Z
s0

½oiGðy � y 0Þl1eiðy0Þ þ x2Gðy � y0Þq1uðy 0Þ	dy0: ð4:12Þ
Because integration here spreads over the region s0 only, Eq. (4.12) defines the scattered field via the fields
uþ and eþi inside the inclusion.
Let us consider the long distance asymptotic of the scattered field. Using a standard technique of the

evaluation of the integral in Eq. (4.12) (see Eringen and Suhubi, 1975; Bohren and Huffman, 1983) we

obtain that for large jyj the following equation holds:
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usðyÞ � AðnÞ e
�ik0rffiffi
r

p ; n ¼ y
r
; r ¼ jyj; ð4:13Þ

AðnÞ ¼ i

ffiffiffiffiffiffi
k30
8p

r
eip=4

il1
k0l0

nk

Z
s0

ekðy0Þeik0ðn�y
0Þ dy0



� q1

q0

Z
s0

uðy 0Þeik0ðn�y0Þ dy0
�
; ð4:14Þ
where AðnÞ is the far amplitude of the scattered field. If vector n has the direction of the wave vector
k0 ¼ k0n0 of the incident field, Aðn0Þ is the forward scattering amplitude. The long distance asymptotics of
the stress and strain scattered fields take the forms that follow from Eq. (4.13)
esi ¼ �ik0niAðnÞ
eik0rffiffi
r

p ; rs
i ¼ �ik0nil0AðnÞ

eik0rffiffi
r

p : ð4:15Þ
The total scattering cross-section of the inclusion Qðk0Þ is defined by the equation (see Eringen and
Suhubi, 1975)
Qðk0Þ ¼
Im½Jðk0Þ	

k0l0
; Jðk0Þ ¼

Z
C
ðr0i euus þ rs

ieuu0Þni dC; ð4:16Þ
where u0ðyÞ and r0kðyÞ are plane incident waves with the wave vector k0 ¼ k0n0
u0 ¼ e�ik0n
0�y; r0i ¼ �ik0n0i l0e�ik0n

0�y: ð4:17Þ

Tildes in Eq. (4.16) mean the complex conjugations, C is a circle of a large radius R. It follows from Eqs.

(4.13)–(4.15) that
ðr0i euus þ rs
ieuu0Þni ¼ � ik0l0ffiffi

r
p ½AðnÞe�ik0reik0n0�y þ ðn0 � nÞeAAðnÞeik0re�ik0n0�y	: ð4:18Þ
After substituting this equation into Eq. (4.16) and using the saddle-point method for the evaluation of the
integral Jðk0Þ when R ! 1, we go to the following expression for Jðk0Þ
Jðk0Þ ¼ il0
ffiffiffiffiffiffiffiffiffi
2pk0

p
Aðn0Þe�ip=4
h

þ eAAðn0Þeip=4i ¼ �il0
ffiffiffiffiffiffiffiffiffi
8pk0

p
Re Aðn0Þe�ip=4
� �

: ð4:19Þ
Finally, for the total scattering cross-section Qðk0Þ in Eq. (4.16) we obtain the equation
Qðk0Þ ¼ �

ffiffiffiffiffiffi
8p
k0

s
Re Aðn0Þe�ip=4
� �

: ð4:20Þ
Thus, the cross-section Qðk0Þ is defined via the forward scattering amplitude Aðn0Þ. (This is the optical
theorem for an infinite cylinder; see a similar theorem for electro-magnetic waves in Bohren and Huffman

(1983).)

From Eqs. (3.5), (3.6), (3.10), (3.11) and (3.14) follows that the forward scattering amplitude Aðn0Þ in Eq.
(4.14) takes the form
Aðn0Þ ¼ ipa2eip=4
ffiffiffiffiffiffi
k30
8p

r
l1
l0

HC

�
� q1

q0
Kq

�
; ð4:21Þ
where quantities HC and Kq are
HC ¼ i
pa2k0

n0i

Z
S0

eiðyÞeik0ðn
0�yÞ dy; Kq ¼ 1

pa2

Z
S0

uðyÞeik0ðn0�yÞ dy: ð4:22Þ
After substituting here uðyÞ ¼ uþðyÞ; eðyÞ ¼ oiuþðyÞ from Eqs. (4.4) and (4.6), where k
 ¼ k0, U
 ¼ U0 ¼ 1,

we obtain for Qðk0Þ the following equation:
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Fig. 1.
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Qðk0Þ ¼ pa2k0Im
l1
l0

HC

�
� q1

q0
Kq

�
: ð4:23Þ
Here Kq and HC have forms (4.8) if k
 ¼ k0.
Using the technique presented in Bohren and Huffman (1983) it is possible to show that the short wave

limit of Qðk0Þ (k0 ! 1Þ takes the form (the paradox of extinction)
lim
k0!1

Qðk0Þ
pa

¼ 4

p
: ð4:24Þ
The character of convergence of Qðk0Þ to this limit may be seen from Fig. 1. Qðk0Þ in this figure is
Qðk0Þ ¼ k0a
l1
l0

HC

�
� q1

q0
Kq

�
¼ k0a

X1
m¼0

am
l1
l0

g1m

�
� q1

q0
gm

�
: ð4:25Þ
The case (a) corresponds to a heavy and hard inclusion (l0 ¼ 1, q0 ¼ 1, l ¼ 100, q0 ¼ 10Þ, the case (b) to a
soft and light inclusion (l0 ¼ 1, q0 ¼ 1, l ¼ 0:01, q0 ¼ 0:1Þ. Thus, in the short wave limit (k0 ! 1Þ the
following equations for the real and imaginary parts of Qðk0Þ hold
ReQðk0Þ ! 0; ImQðk0Þ !
4

p
: ð4:26Þ
This result does not depend on the properties of the matrix and inclusion.
4.2. An approximate solution of the one particle problem

In a number of publications (Sabina and Willis (1988, 1993a,b) and others) an approximate solution of

the one particle problem (3.1) and (3.2) was used in the frame of the EMM. In this approximation elastic

fields uðyÞ and eiðyÞ are assumed to be constant inside every inclusion. After substituting these constants
-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 lg(k0a)

Q

Im(Q)

Re(Q)

-2 -1.5 -1 -0.5 0 0.5 1 lg(k0a)

Q
Im (Q)

Re (Q)

(a) (b)

The dependence of the normalized forward scattered amplitude Q of shear waves on an isolated fiber on the frequency of the

t field k0: (a) a hard and heavy cylindrical inclusion ðl0 ¼ 1, l ¼ 100, q0 ¼ 1, q ¼ 10Þ; (b) a soft and light inclusion ðl0 ¼ 1,

1, q0 ¼ 1, q ¼ 0:1Þ.
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into the right-hand sides of Eqs. (3.1) and (3.2) and averaging the results over volume of the inclusion

(Galerkin�s scheme) we go to the following system of linear algebraic equations for u and ei
u ¼ u
 þ q
1x
2g
u; ei ¼ e
i þ P



ikl
1ek: ð4:27Þ
Here the overbear is the mean over the region s0,
g
ðyÞ ¼ 1

s0

Z
s0

dy
Z
s0

G
ðy � y0Þdy0; P


ikðyÞ ¼

1

s0

Z
s0

dy
Z
s0

oiokG
ðy � y 0Þdy0: ð4:28Þ
The equation
1

s0

Z
s0

dy
Z
s0

oiG
ðy � y0Þdy0 ¼ 0 ð4:29Þ
that holds for a circular inclusion has been taken into account.

After calculating the integrals in Eqs. (4.27) and (4.28) we obtain
g
ðyÞ ¼ � 1

q
x2

ip
2
J0ðk
rÞk
aH ð2Þ

1 ðk
aÞ



þ 1

�
; ð4:30Þ

P


ik ¼

ip
2l


J1ðk
aÞH ð2Þ
1 ðk
aÞhik; hik ¼ dik � nink; ni ¼

yi
r
; ð4:31Þ

u
 ¼ U

1

pa2

Z
S0

e�ik

�y dy ¼ U
hðk
aÞ; hðk
aÞ ¼

2J1ðk
aÞ
k
a

ð4:32Þ
and the solution of Eq. (4.27) takes the form
u ¼ ð1� q
1x
2g
Þ�1hðk
aÞU
; ð4:33Þ

ei ¼ 1



� l
1

l

� ip
2
J1ðk
aÞH ð2Þ

1 ðk
aÞ
��1

hðk
aÞe
i ; e
i ¼ �ik
i U
: ð4:34Þ
Finally, from Eqs. (4.22) we obtain for Kq and HC the following approximate equations
Kq ¼ ð1� q
1x
2g
Þ�1h2ðk
aÞ; ð4:35Þ

HC ¼ 1



� l
1

l

� ip
2
J1ðk
aÞH ð2Þ

1 ðk
aÞ
��1

h2ðk
aÞ: ð4:36Þ
These equations serve only in the long wave region.
5. Solution of the dispersion equation in the long and short wave regions

In this section, we study asymptotic solutions of Eqs. (3.16) and (3.17) in the long and short wave re-

gions. In the long wave region the wave number k0 is small (k0a � 1), and only the main terms in the real

and imaginary parts of the coefficients am in Eq. (4.6) and coefficients gm, g1m in Eqs. (4.9) and (4.10) should
be taken into account. Because the main terms of the real and imaginary parts of the Bessel and Hankel

functions for small values of arguments are
JnðzÞ �
1

n!
z
2

� �n
;

ip
2
znHnðzÞ � �2n�1ðn� 1Þ!þ ip

z2n

n!2nþ1
; ð5:1Þ
the main terms of the coefficients am, gm, g1m take the forms
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a0 ¼ 1



� ip
4
ðkaÞ2 k2


k2

�
� l

l


���1
; a1 ¼ � 2ik


k
1



þ l
1
2l


1

�
� ip
4
ðk
aÞ2

���1
;

g0 ¼ 1; g10 ¼ 0; g11 ¼
ik
2k


: ð5:2Þ
The other coefficients am, gm, g1m may be neglected in the long wave region. As a result the main terms of the
quantities Kq and HC in Eq. (4.8) take the forms
Kq ¼ 1� ip
4
ðk
aÞ2

q
1
q


; ð5:3Þ

HC ¼ 1

�
þ l
1
2l


��1

1

"
þ ip
8
ðk
aÞ2

l
1
l


1

�
þ l
1
2l


��1
#
: ð5:4Þ
Note that the approximate solution of the one particle problem presented in Section 4.2 gives the same

asymptotics for Kq and HC in the long wave region (Eqs. (4.35) and (4.36) coincide with Eqs. (5.3) and (5.4)
for small k0a).
After substituting Eqs. (5.3) and (5.4) into the dispersion equation (3.16) and (3.17) and taking into

account only the main terms in real and imaginary parts of its solution we obtain
k
 ¼ ks � ic; ks ¼ x
ffiffiffiffiffi
qs
ls

r
; c ¼ pp

8
ðksaÞ3

q1ðq � qsÞ
q2s

"
þ 2l1ðl � lsÞ
ðl þ lsÞ

2 � 2pl1l

#
: ð5:5Þ
Here ls and qs are the ‘‘static’’ values of the effective shear modulus and density when x, k0 ¼ 0. These

parameters take the following forms
qs ¼ q0 þ pðq � q0Þ; ls ¼ l0 þ 2p
ðl � l0Þls

l þ ls
: ð5:6Þ
The last equation is in fact an algebraic equation for the static shear modulus ls. This equation for the
effective shear moduli of fiber reinforced composites was firstly obtained in Hill (1965a). For the absolutely

rigid inclusions (l ! 1Þ the solution of Eq. (5.6) is
ls ¼
l0

1� 2p
; ð5:7Þ
and for cylindrical pores (l ¼ 0Þ

ls ¼ ð1� 2pÞl0: ð5:8Þ
Note that these equations give physically reasonable values of ls (ls > 0Þ only for p < 0:5.
Let us consider the solution of the dispersion equations (3.16) and (3.17) of the EMM in the short wave

limit. In this case x; k0 ! 1, and as it follows from Eqs. (4.8), (4.25) and (4.26) Kq, HC ! 0. As a result, the
solution of the dispersion equations (3.16) and (3.17) for k
 takes the following form:
k
 ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 þ pq1Kq

l0 þ pl1HC

s
� k0 1



� p
2

l1
l0

HC

�
� q1

q0
Kq

��
: ð5:9Þ
Hence, when k0 ! 1 the attenuation factor c is
c ¼ �Imk
 ¼
p
2
k0Im

l1
l0

HC

�
� q1

q0
Kq

�
¼ pQðk0Þ

2pa2
; ð5:10Þ
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where Qðk0Þ is the total scattering cross-section of the inclusion defined in Eq. (4.23). Taking into account
Eqs. (4.25) and (4.26) we obtain for the short wave limits of the attenuation factor c and phase velocity v
 of
the mean wave field the following equations:
lim
k0!1

c ¼ c ¼ 2p
pa

; ð5:11Þ
lim
k0!1

v
 ¼ lim
k0!1

x
Rek


¼
ffiffiffiffiffi
l0
q0

r
¼ v0: ð5:12Þ
Here we take into account that
k0Re
l1
l0

HC

�
� q1

q0
Kq

�
! 0 if k0 ! 1: ð5:13Þ
Thus, the short wave limit of the velocity of the mean wave field coincides with the wave velocity in the

matrix v0. The short-wave limit of the attenuation factor c does not depend on elastic properties of the
matrix and inclusions and is proportional to the volume concentration of inclusions p. This result may be
interpreted as follows. In the short wave limit the geometrical optic interpretation may be used for the

description of the mean wave field in the composite. The mean field may be considered as a set of inde-
pendent beams propagating through the medium. Because of existing a continuous component (matrix) the

phase velocity of the mean wave field should coincide with the wave velocity in the matrix. The attenuation

factor c in the short wave limit does not depend on the frequency of the incident field and on the properties
of the inclusions and is only a function of a number of scatterers in a unit length (see similar results for

elastic, scalar and electromagnetic waves in Bussemer et al. (1991) and Kanaun (1996, 1997, 2000)).

Note that for many materials attenuation at high frequencies is mainly defined by viscosity and non-

linear mechanisms that are not taken into account in this study.
6. The second version of the EMM

Version I of the EMM was applied to the calculation of the elastic moduli of composites with spherical

inclusions in Budiansky (1965) and Hill (1965b). It turns out that the corresponding formulas for the elastic

moduli of the composites with spherical inclusions do not correspond to experimental data in the region of

high volume concentrations of inclusions (p > 0:3Þ (see, e.g., Kanaun and Levin, 1994). In order to correct
the predictions of the EMM in this region another version of the EMM was proposed in Christensen and

Lo (1979). A similar version of the EMM was considered in Kerner (1956) also for the case of statics. In this

version (version II) the layer of the matrix material was involved in the border between the inclusion and

the effective medium. Thus, the main hypothesis (1) of the method was formulated as follows
1
. Every inclusion in the composite behaves as a kernel of a layered inclusion embedded in the effective

medium. The size and the properties of the kernel coincide with these characteristics of the inclusion, and the

properties of the outside layer coincide with the properties of the matrix.

The size of the outside layer depends on the volume concentration p of the inclusions. For cylindrical
inclusions with circular cross-sections the radius of the kernel a and outside radius b of the matrix layer are
connected by the equation (Kerner, 1956; Christensen and Lo, 1979)
a
b

� �2
¼ p: ð6:1Þ
The condition of self-consistency in this version coincides with hypothesis 2 of version I of the EMM.
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In this version the one particle problem is the diffraction of a plane monochromatic wave on a layered

inclusion embedded in a homogeneous effective medium. The differential equations of this problem are

similar to Eq. (4.1) (for the field inside the inclusion and in the effective medium). The field in the matrix

layer satisfies the equation Duþ k20u ¼ 0, a > jyj > b, with the conditions similar to (4.2) on the boundaries
of the layer. The same technique as in the case of a homogeneous inclusion gives us the following equations

for the wave field uðyÞ in the inclusion, the layer, and the medium
uðyÞ ¼ uþðyÞ ¼
X1
m¼0

amJmðkrÞ cosðmuÞ; 06 r6 a; ð6:2Þ

uðyÞ ¼
X1
m¼0

½cmJmðk0rÞ þ dmNmðk0rÞ	 cosðmuÞ; a6 r6 b; ð6:3Þ

uðyÞ ¼ u�ðyÞ ¼
X1
m¼0

½�mð�iÞmU 
Jmðk
rÞ þ bmHmðk
rÞ	 cosðmuÞ; r > b: ð6:4Þ
Here NmðzÞ is the Bessel function of the second kind and of the order m. The constants am, bm, cm and dm are
to be found from the boundary conditions on the interfaces r ¼ a and r ¼ b that are similar to Eq. (4.2).
These conditions give us a system of linear algebraic equations for the constants in Eqs. (6.2)–(6.4), which

solution takes the form
am ¼ 1

D
ðB1A22 � B2A12Þ; bm ¼ � 1

D
ðB1A21 � B2A11Þ; ð6:5Þ

cm ¼ p
2l0

A11am; dm ¼ � p
2l0

A21am; ð6:6Þ

D ¼ A11A22 � A12A21; ð6:7Þ

A11 ¼ l0k0aJmðkaÞN 0
mðk0aÞ � lkaJ 0

mðkaÞNmðk0aÞ; ð6:8Þ

A12 ¼ l
k
bNmðk0bÞH 0
mðk
bÞ � l0k0bHmðk
bÞN 0

mðk0bÞ; ð6:9Þ

A21 ¼ l0k0aJmðkaÞJ 0
mðk0aÞ � lkaJ 0

mðkaÞJmðk0aÞ; ð6:10Þ

A22 ¼ l
k
bJmðk0bÞH 0
mðk
bÞ � l0k0bHmðk
bÞJ 0

mðk0bÞ; ð6:11Þ

B1 ¼ �mð�iÞmU
½l0k0bJmðk
bÞN 0
mðk0bÞ � l
k
bJ

0
mðk
bÞNmðk0bÞ	; ð6:12Þ

B2 ¼ �mð�iÞmU
½l0k0bJmðk
bÞJ 0
mðk0bÞ � l
k
bJ

0
mðk
bÞJmðk0bÞ	: ð6:13Þ
The dispersion equation of version II of the EMM is similar to the dispersion equation of version I and has

the form of Eqs. (3.16) and (3.17). The functions Kq and HC in (3.16) and (3.17) are given by Eqs. (4.8)–

(4.10), where the coefficients am should be taken from Eq. (6.5).

Let us consider the solution of the dispersion equation of this version of EMM in the long wave region

when k0a � 1. Using Eq. (5.1) one can find the main terms of the coefficients am in Eq. (6.5) in the forms
a0 ¼ 1þ ip ðk
bÞ2 1

�
� v2
 ð1



� pÞ l0

2
þ p

l
2

��
;

4 l
 v0 v
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a1 ¼ � 8ik

k

l0l
 a10



þ ip
4
ðk
bÞ2a11

�
; ð6:14Þ

a10 ¼ fl½ð1þ pÞl0 þ ð1� pÞl
	 þ l0½ð1� pÞl0 þ ð1þ pÞl
	g
�1
;

a11 ¼ a210fl½ð1þ pÞl0 � ð1� pÞl
	 þ l0½ð1� pÞl0 � ð1þ pÞl
	g: ð6:15Þ

As a result, the functions Kq and HC in Eqs. (3.16) and (3.17) for version II of the EMM take the forms
Kq ¼ 1� ip
4
ðk
bÞ2

ð1� pÞq0 þ pq � q

q


; ð6:16Þ

HC ¼ 4l0l
 a10



þ ip
4
ðk
bÞ2a11

�
: ð6:17Þ
In the long wave region the main terms of the effective shear modulus l
 and the effective density q
 should

be found in the forms
l
 ¼ ls þ
ip
4
ðksbÞ2lx; q
 ¼ qs þ

ip
4
ðksbÞ2qx; ks ¼ x

ffiffiffiffiffi
qs
ls

r
; ð6:18Þ
where ls; qs are ‘‘static’’ values of these parameters (x ¼ 0Þ. The main term in the real and imaginary parts

of functions Kq and HC in Eqs. (6.16) and (6.17) are
Kq ¼ 1� ip
4
ðksbÞ2

ð1� pÞq0 þ pq � qs
qs

HC ¼ 4l0ls
Ds

1



þ ip
4
ðksbÞ2

l0d1
ls

lx

�
þ l0d1 � lsd2

��
ð6:19Þ

d1 ¼ ð1þ pÞl þ ð1� pÞl0; d2 ¼ ð1� pÞl þ ð1þ pÞl0; Ds ¼ l0d1 þ lsd2: ð6:20Þ

After substituting Eq. (6.19) into Eqs. (3.16) and (3.17) we obtain
qs ¼ pq þ ð1� pÞq0; qx ¼ p
q1
qs

½pq þ ð1� pÞq0 � qs	 ¼ 0: ð6:21Þ
Thus, the imaginary part of the dynamic density qx in Eq. (6.18) turns to be equal to zero. It means that
the series of the dynamic density with respect to frequency x does not contain terms proportional to x2.

From Eqs. (3.16), (3.17) and (6.19) we also obtain that the static shear modulus ls satisfies the equation
ls ¼ l0 1

�
þ 4pl1ls

Ds

�
ð6:22Þ
and the imaginary part of the modulus l
 in Eq. (6.18) takes the form
Imðl
Þ ¼
p
4
ðksbÞ2lx; lx ¼ ðl0d1 � lsd2Þ 1

"
� 4pl1d1

l0
Ds

� �2#�1
: ð6:23Þ
Here coefficients di and Ds are defined in Eq. (6.20). Eq. (6.22) is a square algebraic equation for the

modulus ls. It is easy to show that the only positive root of this equation is
ls ¼ l0 1



þ 2pðl � l0Þ

�
: ð6:24Þ
2l0 þ ð1� pÞðl � l0Þ
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Eq. (6.24) coincides with one of the well known Hashin–Strikman bounds for the effective shear modulus

of the fiber composites (see Talbot and Willis, 1983). This equation also coincides with the result of ap-

plication of another self-consistent method (the effective field method) to the problem under consideration

(see Kanaun and Levin, 1993). Eq. (6.24) gives physically reasonable values of the effective shear modulus
(ls > 0Þ for all possible values of the volume concentrations of fibers and elastic properties of the latter.
Theoretical dependences of the shear modulus ls of a composite reinforced with cylindrical fibers on

volume concentrations of the fibers p are compared with experimental data in Fig. 2. The composite with
l0 ¼ 2:03 GPa, l ¼ 12:5 GPa and 0 < p < 0:8 is considered. The solid line in Fig. 2 is the prediction of
version I of the EMM (Eq. (5.6)); the line with circles is the predictions of version II (Eq. (6.24)), squares

are experimental data given in Dean and Lockett (1973). It is seen that the predictions of version II are

closer to the experimental data than the predictions of version I in the region of high volume concentrations

of inclusions.
After substituting Eq. (6.24) into the right-hand side of Eq. (6.23) we obtain that the imaginary part of

the dynamic shear modulus l
 disappears (lx ¼ 0Þ. It follows from this equation and Eq. (6.21) (qx ¼ 0Þ
that the series of the imaginary part of the effective wave number k
 (or the attenuation factor) with respect
to x begins with the terms of the order higher than x3 (c ¼ oðx3Þ). Thus, version II of the EMM does not

describe the attenuation caused by the Rayleigh scattering of waves on inclusions that is proportional to x3.

This conclusion is independent of the volume concentration p of inclusions and their properties.
Note that in the literature exists another version of the EMM (version III) (see, e.g., Stroud and Pan,

1978). In this version hypothesis 1 coincides with hypothesis 1
 of version II but the condition of self-
consistency (hypothesis 2) is formulated as following.

2
. The parameters of the effective medium are to be chosen in order to eliminate the forward amplitude of

the wave field scattered on the layered inclusion embedded in the effective medium.

As it follows from Eqs. (4.13), (4.14) and (6.4) the forward amplitude Aðn0Þ of the field scattered on the
layered inclusion takes the form
2

4

6

0 0.2 0.4 0.6 p

µµµµ s,,,, GPa

Fig. 2. The dependences of the static elastic shear modulus l
 ¼ ls of the fiber composites on volume concentrations of inclusions p; the
solid line corresponds to version I the EMM, the line with dots to version II, squares are experimental data in Dean and Lockett

(1973).
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Aðn0Þ ¼
X1
m¼0

bm exp
ip
2
ðm



þ 1Þ

�
: ð6:25Þ
According to hypothesis 2
 the properties of the effective medium should be taken in order to eliminate

the right-hand side of this equation. It is not difficult to realize this version of the EMM using Eq. (6.25). It

turns out that the predictions of this version are very close to the predictions of the version II of the EMM

developed in this study.

Let us show that version III also does not describe attenuation caused by Rayleigh wave scattering on
inclusions. In the long wave region the main term of the right-hand side of Eq. (6.25) takes the form
Aðn0Þ ¼ b0 � 2b1 þ ipðbksÞ2ðb20 � 2b21Þ; ð6:26Þ

b0 ¼
1

4q

½q
 � pq � ð1� pÞq0	; b1 ¼

l0d1 � l
d2
l0d1 þ l
d2

:

Here coefficients d1 and d2 are defined in Eq. (6.20). If q
 ¼ qs; l
 ¼ ls, where qs and ls are given in Eqs.
(6.21) and (6.24), the coefficients b0, b1 in Eq. (6.26) turn to be equal to zero. It means that the roots of the
equation Aðn0Þ ¼ 0 in the long wave region are the static density and elastic modulus of the composite given

in Eqs. (6.21) and (6.24). In the other words, the main terms of the dynamic density and shear modulus in

the long wave region do not contain terms proportional to x2. Thus, version III of the EMM, similar to

version II, predicts that the main term of the imaginary part of the effective wave number (attenuation

factor) has the order higher than x3.
7. Numerical solution of the dispersion equation

In this section, we construct numerical solutions of the dispersion equations (3.16), and (3.17) of the

EMM in the region 0 < k0a < 100 of the wave numbers of the incident field. In the calculations we take

l0 ¼ 1, q0 ¼ 1, a ¼ 1 and for these data parameter k0a coincides with the frequency x of the incident field.
The numerical solution is obtained by the iterative procedure based on the equations that follow from Eqs.

(3.16) and (3.17)
lðnÞ

 ¼ lðn�1Þ


 þ e½lðn�1Þ

 � l0ð1þ pl1HCðkðn�1Þ
 ; lðn�1Þ


 ÞÞ	;
qðnÞ

 ¼ qðn�1Þ


 þ e qðn�1Þ



�
� q0½1þ pq1Kqðkðn�1Þ
 ; lðn�1Þ


 Þ	
�
;

kðnÞ
 ¼ x
qðnÞ



lðnÞ



 !1=2

; l1 ¼
l1
l0

; q1 ¼
q1
q0

:

ð7:1Þ
Here kðnÞ
 , lðnÞ

 , q

ðnÞ

 are the effective parameters for the nth iteration; functions HCðk
; l
Þ and Kqðk
; l
Þ are

defined in Eqs. (4.8)–(4.10). Parameter eðjej < 1Þ is to be chosen for conversion of the iterative process. For
version I of the EMM the coefficient am in Eqs. (4.8)–(4.10) are defined in Eqs. (4.6) and (4.7), and for
version II am are given in Eqs. (6.5)–(6.13). As an initial (zero) approximation we use the static solution
for l
 (l

ð0Þ

 ¼ lsÞ given in Eq. (5.6) and the equation kð0Þ
 ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq0 þ pq1Þ=ls

p
for the effective wave number.

The dependences of the velocities and attenuation factors of the mean wave field on the frequency of the

incident field and volume concentrations of inclusions are presented in Figs. 3 and 4(a)–(c). In these figures

solid lines correspond to version I of the EMM, the lines with circles to version II, and the lines with

triangles correspond to version I when the approximate solution of the one particle problem (see Section

4.2) is used. The cases of hard and heavy inclusions (l=l0 ¼ 100, q=q0 ¼ 10Þ are in Fig. 3(a)–(c) (for three
values of the volume concentrations of fibers p ¼ 0:1; 0:3; 0:5), and the cases of soft and light inclusions
(l=l0 ¼ 0:01, q=q0 ¼ 0:1Þ are in Fig. 4(a)–(c). Horizontal dashed lines in Figs. 3 and 4(a)–(c) are the short
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Fig. 3. (a) The dependences of attenuation factors c and velocities of the mean wave field v in the composites with hard and heavy
inclusions ðl0 ¼ 1, l ¼ 100, q0 ¼ 1, q ¼ 10Þ on the frequency of the incident field, volume concentration of fibers p ¼ 0:1. Solid lines

corresponds to the first version of the EMM, lines with dots to the second version of the EFM, lines with triangles correspond the first

version and approximate solution of the one particle problem; (b) the same graphs as in Fig. 3a for p ¼ 0:3; (c) the same graphs as in

Fig. 3a for p ¼ 0:5.
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Fig. 4. (a) The dependences of attenuation factors c and velocities of the mean wave field v in the composites with soft and light
inclusions ðl0 ¼ 1, l ¼ 0:01, q0 ¼ 1, q ¼ 0:1Þ on the frequency of the incident field, volume concentration of fibers p ¼ 0:1. Solid lines

corresponds to the first version of the EMM, lines with dots to the second version of the EFM, lines with triangles correspond the first

version and approximate solution of the one particle problem; (b) the same graphs as in Fig. 4a for p ¼ 0:3; (c) the same graphs as in

Fig. 4a for p ¼ 0:5.
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wave limits of the attenuation factors and of the mean wave velocities for the considered volume con-

centration of inclusions (see Eqs. (5.11), and (5.12)). Note that short wave limits of v
 and c are practically
achieved for k0a ¼ 30.
8. Discussion and conclusion

The analytical and numerical results obtained in previous sections allow us to compare the predictions of

versions I and II of the EMM in a wide region of frequencies of the incident field, volume concentrations
and properties of inclusions. In the cases of contrasted matrix and inclusions ðl=l0; q=q0 > 10 or

l=l0; q=q0 < 0:1Þ and for small volume concentrations of the latter ðp < 0:2Þ both methods give close re-
sults for the velocities of the mean wave fields in the composites. But these versions predict quite different

behavior of the attenuation factor c of the mean wave field in the long wave region. In this region c has the
order of x3 for the first version of the EMM and the order of x5 for the second version. As a result, the

corresponding dependences of c on k0 have different slopes in the logarithmic scale (see Figs. 3 and 4(a)–(c)).
Thus, version II does not describe Rayleigh scattering of waves on inclusions that takes place in any

homogeneous medium with a random set of isolated inclusions in the long wave region. In the middle and
short wave regions both versions of the EMM give close results for the attenuation factors.

The algorithm of the EMM is simplified essentially if the approximate solution of the one particle

problem is used (Section 4.2). The EMM with the approximate and exact solutions of the one particle

problem give close predictions for the velocities and attenuation factors of the mean wave field in the long

wave region (k0a < 1), but these predictions deviate in the short wave region. The approximate solution is

based on the assumption that the wave field inside every inclusion is constant. This assumption is evidently

violated in the short and middle wave regions. As a result, in these regions the field inside an inclusion and

the field scattered by an inclusion are calculated with essential error. In fact, an inclusion scatters more
energy than the approximate solution predicts. This error increases with the frequency, and as a result, the

attenuation factor decreases instead of being constant in the short wave region (see Figs. 3 and 4(a)–(c)).

Nevertheless the approximate solution describes the dependences of the velocity of the mean wave field on

frequency in all frequency regions sufficiently well.

Essential discrepancies of two versions of the EMM may be observed for high volume concentrations of

inclusions ðp > 0:3Þ in the low and middle wave region (k0a < 5). In the long wave region the velocity of the

mean wave field is mainly defined by static elastic properties of the composite. As it was shown in Section 6,

version II of EMM corresponds better to experimental data in case of statics. Thus, one can expect that the
predictions of this version for the velocities of the mean wave field are more reliable than the predictions of

version I in the long wave region if p > 0:3.
The most abrupt changes in the dependences of the velocity of the mean wave field on frequency are

observed in the region where k0a ¼ Oð1Þ. This is the region of the first quasi-resonance of an isolated in-
clusion in homogeneous matrix (see the first maxima in the frequency dependences of the total scattering

cross-section of isolated inclusions in Fig. 1). After that, in the middle wave region, the structure of the

mean wave field becomes more complex, and one observes more oscillations in the frequency dependences

of the velocity in this area. But the changes near the first quasi-resonance are stronger than in any other
region. Experiments show a similar behavior of the frequency dependences of the velocity of the mean wave

field in the composites with spherical inclusions (see Sabina and Willis, 1988).

If the inclusions and matrix have less contrast 0:1 < l=l0, q=q0 < 10, the predictions of both versions of

the EMM for the velocities of the mean wave field become closer, and the process of numerical solution of

the dispersion equation (see Section 7) needs less iterations. Nevertheless the predictions of the two version

of the EMM for attenuation factors in the long wave region are different even for non-contrasted matrix

and inclusions.
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As a final conclusion one can make the following points. The EMM is an efficient way to calculate the

velocities and attenuation factors of the mean wave fields in fiber reinforced composite materials. The

algorithm of calculation of these parameters is fast, simple, and does not create difficulties in programming.

The predictions of version I of the EMM are reliable only in the region of small volume concentrations of
inclusions (p < 0:2). The error of the calculation of the velocities as well as the attenuation factors increases
with the volume concentration of inclusions if this version is used. Version II of the EMM improves the

predictions of the velocities of the mean wave field in the region of high volume concentrations of inclusions

but attenuation factors in the long wave region are calculated with essential errors.

It is necessary to note that an inevitable defect of all the versions of the EMM is their inability to describe

the influence of the peculiarities in spatial distributions of inclusions in the matrix on the effective properties

of the composite material. Such a description is possible in the framework of another self-consistent

scheme: the so-called effective field method (see Kanaun and Levin, 1993, 1994; Kanaun, 2000).
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